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Abstract. We present calculations of the localisation length, λ2, for two interacting particles (TIP) in
a one-dimensional random potential, presenting its dependence on disorder, interaction strength U and
system size. λ2(U) is computed by a decimation method from the decay of the Green function along the
diagonal of finite samples. Infinite sample size estimates ξ2(U) are obtained by finite-size scaling. For U = 0
we reproduce approximately the well-known dependence of the one-particle localisation length on disorder
while for finite U , we find that ξ2(U) ∼ ξ2(0)β(U) with β(U) varying between β(0) = 1 and β(1) ≈ 1.5. We
test the validity of various other proposed fit functions and also study the problem of TIP in two different
random potentials corresponding to interacting electron-hole pairs. As a check of our method and data,
we also reproduce well-known results for the two-dimensional Anderson model without interaction.

PACS. 71.55.Jv Disordered structures; amorphous and glassy solids – 72.15.Rn Quantum localization –
71.30.+h Metal-insulator transitions and other electronic transitions

1 Introduction
The interplay between disorder and many-body interac-
tions in electronic systems has been studied intensively
over the last two decades [1] and still continues to receive
much attention. Unlike the case of non-interacting elec-
trons, where the “scaling hypothesis of localisation” [2]
can reliably predict the results of many experimental and
numerical studies, there is no equally successful approach
to localisation when many-particle interactions become
important [1]. Recently, experimental studies of persis-
tent currents in mesoscopic rings [3] and the discovery of a
metal-insulator transition in certain two-dimensional (2D)
electron gases at zero magnetic field [4] have shown that
the presence of interactions can indeed give rise to both
quantitatively and qualitatively unexpected phenomena.

A simple and tractable approach to the problem of in-
teracting electrons in disordered materials is the case of
only two interacting particles (TIP) in a random poten-
tial in one dimension. For a Hubbard on-site interaction
this problem has recently attracted a lot of attention after
Shepelyansky [5,6] argued that attractive as well as re-
pulsive interactions between the two particles (bosons or
fermions) lead to the formation of particle pairs whose lo-
calisation length λ2 is much larger than the single-particle
(SP) localisation length λ1 [7,8]. Based on a mapping
of the TIP Hamiltonian onto an effective random matrix
model (RMM) he predicted

λ2 ∼ (U/t)2λ2
1 (1)
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at two-particle energy E = 0, with t the nearest-neighbor
hopping matrix element and U the Hubbard interaction
strength. Shortly afterwards, Imry [9] used a Thouless-
type block-scaling picture (BSP) in support of this. The
major prediction of this work is that in the limit of weak
disorder a particle pair will travel much further than a
SP. This should be contrasted with renormalization group
studies of the 1D Hubbard model at finite particle density
which indicate that a repulsive onsite interaction leads to
a strongly localised ground state [10].

The preferred numerical method for accurately com-
puting localisation lengths in disordered quantum sys-
tems is the transfer matrix method (TMM) [11]. Thus
it was natural that the first numerical studies devoted to
the TIP problem also used the TMM to investigate the
proposed enhancement of the pair localisation length λ2

[5,12]. Other direct numerical approaches to the TIP prob-
lem have been based on the time evolution of wave pack-
ets [5,13], exact diagonalization [14], or Green function
approaches [15,16]. In these investigations usually an en-
hancement of λ2 compared to λ1 has been found but the
quantitative results tend to differ both from the analytical
prediction in equation (1), and from each other. Further-
more, a check of the functional dependence of λ2 on λ1

is numerically very expensive since it requires very large
system sizes.

Following the approach of reference [12], two of us
studied the TIP problem by a different TMM [17] at
large system size M and found that (i) the enhancement
λ2/λ1 decreases with increasing M , (ii) the behavior of
λ2 for U = 0 is equal to λ1 in the limit M → ∞ only,
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and (iii) for U 6= 0 the enhancement λ2/λ1 also vanishes
completely in this limit. Therefore we concluded [17] that
the TMM applied to the TIP problem in 1D measures an
enhancement of the localisation length which is due to the
finiteness of the systems considered.

The main problem with this approach is that the en-
hanced localisation length λ2 is expected to appear along
the diagonal sites of the TIP Hamiltonian, whereas the
TMMs of references [12,17] proceed along a SP coordi-
nate. Various new TMM approaches have been developed
to take this into account [12,17–19], but still all TMMs
share a common problem: in general the U = 0 result for
λ2 does not equal the value of λ1/2 which is expected for
non-interacting particles as explained below. Rather, they
show localisation lengths λ2(U = 0) which are much larger
than λ1/2 and very close to λ2(U ≈ 1).

The obvious failure of the TMM approach to the TIP
problem in a random potential has lead us to search
for and apply another well-tested method of computing
localisation lengths for disordered system: the decima-
tion method (DM) [20]. Furthermore, instead of simply
considering localisation lengths λ2(U) obtained for finite
systems [12,14–16], or by simple extrapolations to large
M [17], we will construct finite-size scaling (FSS) curves
and compute from these curves scaling parameters which
are the infinite-sample-size estimates of the localisation
lengths ξ2(U). We find that onsite interaction indeed leads
to a TIP localisation length which is larger than the SP
localisation length at E = 0 and for not too large U .
However, the actual functional dependence is not simply
given by equation (1). In fact our data allow us to see
ξ2(U) ∼ ξ2(0)β with an exponent β which increases with
increasing |U | at E = 0.

The paper is organized as follows: In Section 2 we intro-
duce the numerical DM used to compute the localisation
lengths. In Section 3, we investigate the numerical relia-
bility of the DM by studying the Anderson model in 2D.
We then apply the method to the case of TIP in Section 4
and use FSS in order to construct infinite-sample-size esti-
mates in Section 5. We fit our data with various functional
forms for ξ2 put forward in the literature. In Section 6
we also study the problem of two interacting particles in
different random potentials. In Section 7, we study the
related problem of a SP in a 2D random potential with
additional barriers. We conclude in Section 8.

2 The decimation method

We shall be considering properties of Hamiltonians of the
form

H = −t
∑
n,m

(|n,m〉〈n+ 1,m|+ |n,m〉〈n,m+ 1|+ h.c.)

+
∑
n,m

|n,m〉
(
ε1n + ε2m + U(n)δnm

)
〈n,m|

(2)

where the choice of ε1n, ε2m and the definition of U(n) de-
pends on the specific problem considered. For the case of

TIP in 1D the indices n and m correspond to the po-
sitions of each particle on a 1D chain of length M and
ε1n = ε2n ∈ [−W/2,W/2]. We shall also present results for
the case of ε1n 6= ε2n which corresponds to two interact-
ing particles in different 1D random potentials, e.g., two
electrons on neighboring chains, or an electron and a hole
on the same chain. In these cases U(n) = U is the inter-
action between the two particles. Instead of considering
TIP we can also choose M2 uncorrelated random num-
bers ε̃nm ∈ [−W/2,W/2] and replace ε1n + ε2m in (2) by
ε̃nm. Then the Hamiltonian (2) corresponds to the stan-
dard Anderson model for a single particle in 2D with an
additional potential U(n) along the diagonal of the 2D
square. In all cases we use hard-wall boundary conditions
and t ≡ 1 sets the energy scale.

We now proceed to construct an effective Hamiltonian
along the diagonal of the M × M lattice by using the
DM [20]. If we write A(E) = E1−H, the defining equa-
tion A(E)G(E) = 1 for the Green function G(E) can be
written as

N−1∑
j=1

Aij(E)Gjk(E) +AiN (E)GNk(E) = δik (3)

where N = M2 is the total number of sites in the system
and the indices i, j, k = 1, . . . , N represent multi-indices
for the M2 states |n,m〉. From this we can see by choosing
i = N that

GNk(E) =
δNk

ANN (E)
−
N−1∑
j=1

ANj(E)

ANN (E)
Gjk(E). (4)

Substituting into (3) gives for all k 6= N

N−1∑
j=1

[
Aij(E) −

AiN (E)ANj(E)

ANN (E)

]
Gjk(E) = δik. (5)

In this way we have obtained an effective Hamiltonian

H′(E) with matrix elements H ′ij(E) = Hij +
HiNHNj
E−HNN

whose Green function is identical to that of the full Hamil-
tonian on all non-decimated sites. This process is repeated
until we are left with an effective Hamiltonian for the
doubly-occupied sites only.

We remark that due to cpu-time considerations it
turned out to be useful to split the Hamiltonian into two
halves along the diagonal and to start the decimation pro-
cess from the outer corner of the triangular half and then
decimate in slices towards the diagonal. The procedure
is shown pictorially in Figure 1. We emphasize that the
decimation can be carried out independently of the value
of U until the diagonal is reached. This allows us to ef-
ficiently generate data for many U values. Furthermore,
for the case of TIP we only need to decimate one half and
use the symmetry of the spatial part of the wave function
for the other half. We remark that it is an advantage of
our method compared to the Green function approach of
reference [15] that we can choose whether we want to in-
clude the symmetry — as for TIP — or not — as for the
2D Anderson model.
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Fig. 1. The decimation process: (a) The lattice is split into
two parts. (b) Each half is then ‘decimated’ independently.
(c,d) Sites (•) and nearest-neighbor hops (−) in the original
lattice are replaced successively by effective long-range hops
(− · ·−) between the effective sites (�). (e) This decimation
continues until (f) the diagonal is reached. (g) Finally, the two
halfs are recombined.

We shall now focus our attention upon the TIP locali-
sation length λ2 obtained from the decay of the transmis-
sion probability of TIP from one end of the system to the
other. In accordance with the SP case [11], λ2 is defined
by the TIP Green function, G2(E). More precisely [15]

1

λ2
= −

1

|M − 1|
ln |〈1, 1|G2|M,M〉|. (6)

The Green function matrix elements 〈1, 1|G2|M,M〉 are

computed by inverting the matrix Ã(E) = E1−H̃(E) ob-

tained from the effective Hamiltonian H̃(E) for the doubly
occupied sites. We remark that in order to reduce possi-
ble boundary effects, we compute λ2 by considering the
decay between sites slightly inside the sample instead of
the boundary sites (M,M).

−2 0 2
log10ξ1/M

−2

−1

0

1

lo
g 10

λ 1/
M

Fig. 2. Finite-size scaling plot of the reduced localisation
lengths λ1/M for the SP Anderson model in 2D. The filled
symbols correspond to a disorder W = 3 at which the scaling
is unreliable.

3 Testing the decimation method

As mentioned in the introduction, one of the surprises
of the TIP problem is the apparent inapplicability of the
TMM approach, which leads to a large enhancement of
the localisation lengths even in the absence of interaction
(U = 0). Thus it appears necessary that before using the
DM for the case of TIP, we should also check that by
restricting ourselves to the decay of the Green function
along the diagonal, we do not encounter similar artificial
enhancements of λ2(U = 0). As a first test, we have there-
fore studied the decay of the Green function along the di-
agonal for the usual 2D Anderson model at various disor-
ders W = 0.65, . . . , 20 and system sizes M = 51, . . . , 261.
For comparison, estimates of λ1 were computed by the
standard TMM [11] in 2D. We then use FSS as in [11]
and compute the localisation lengths ξ1(W ) valid at infi-
nite system size for both sets of data.

In Figures 2 and 3 we show the FSS curve and the
resulting localisation lengths ξ1 obtained by DM averaged
over 100 samples for each W and M . We also include
in Figure 3 TMM data with 1% accuracy. When we are
considering a 2D system, to obtain the correct value of
the localisation length we have to multiply the localisa-
tion length obtained from equation (6) by

√
2 to take ac-

count of the fact that we are studying the decay along the
diagonal. As shown in Figures 2 and 3, the agreement is
good down to W = 4.5 where the FSS becomes unreliable.
We clearly see that using the DM to calculate the Green
function along the diagonal reproduces the well-known re-
sults of reference [11] up to the geometrical factor which is
easily understood. Furthermore, the deviations from the
TMM results for ξ1 show that our method underestimates
the infinite system size results. Therefore the above men-
tioned problem of the TMM giving rise to too large a
value for the TIP-localisation lengths λ2 due to small sys-
tem size should not appear. We emphasize that the FSS
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Fig. 3. SP localisation lengths
√

2 ξ1 obtained by DM along
the diagonal (◦) and ξ1 computed by TMM of quasi-1D strips
(dashed line) after FSS. The filled symbol corresponds to W =
3 as in Figure 2.

procedure is more than an extrapolation to the infinite
system size [11] and it allows us to identify the disorders
at which FSS breaks down as shown in Figure 2.

Before proceeding to the case of TIP, we need to dis-
cuss an important difference between the data obtained
from TMM and DM. The TMM proceeds by multiply-
ing transfer matrices for 2D strips (3D bars) of finite size
M (M ×M) many times until convergence is achieved.
The localisation lengths are then computed as eigenval-
ues of the resulting product matrix [11]. However, in the
present case of DM (or any other Green function method
applied to TIP), the localisation lengths are estimated by
assuming an exponential decay as in equation (6). Such a
simple functional form, however, will no longer be reliably
observable when ξ1 ∼M and we will start to measure the
oscillations in the Green function underlying the exponen-
tial envelope (6). Looking at Figure 3, we indeed see that
the deviations from the TMM result start at ξ1 ≈ 250,
that is, just at the largest system sizes used. Increasing
the number of samples will reduce this effect, but this
quickly becomes prohibitive due to the immense compu-
tational effort. With this in mind, we now continue to the
case of TIP.

4 The TIP problem at fixed system size

We now compute the Green function at E = 0 for 26 dis-
order values W between 0.5 and 9 indicated in Figure 4,
for 24 system sizes M between 51 and 251, and 11 interac-
tions strengths U = 0, 0.1, . . . , 1.0. For each such triplet of
parameters (W,M,U) we average the inverse localisation
lengths 1/λ2 computed from the Green function according
to equation (6) over 1000 samples.

1 10
W

10
0

10
1

10
2

λ

Fig. 4. Two-particle localisation length λ2 at energy E = 0
for system size M = 201 and interaction strength U = 0 (◦),
U = 0.2 (3) and U = 1 (2). The thick solid line represents
1D TMM data for SP localisation length λ1/2, the dashed line
is computed from the convolution of SP Green functions in
equation (7). The thin line is the perturbative result λ1/2 ≈
52/W 2.

In Figure 4, we show the results for M = 201. Let us
first turn our attention to the case U = 0. As pointed out
previously [16], the TIP Green function G2 at E = 0 is
given by a convolution of two SP Green functions G1 at
energies E1 and −E1 as

〈1, 1|G2(0)|M,M〉∼

∫
dE′〈1|G1(E′)|M〉〈1|G1(−E′)|M〉.

(7)

Assuming that 〈1|G1(E)|M〉 ∝ exp [−|M − 1|/λ1(E)],
where λ1(E) is the SP localisation length of states
in the 1D Anderson model [8], one expects that the
largest localisation lengths dominate the integral. Since
λ1(0) ≥ λ1(E), this implies that 〈1, 1|G2(0)|M,M〉 ≈
exp [−2|M − 1|/λ1(0)]. Applying equation (6), we get
λ2 = λ1/2 [21]. Therefore we have also included data for
λ1/2 in Figure 4. Since λ1 deviates from the simple power-
law prediction [8] λ1 ≈ 104/W 2 at E = 0 for λ1 . 4
(W & 5), we have computed λ1 by TMM [7] in 1D with
0.1% accuracy.

Comparing these results with the TIP localisation
lengths obtained from the DM, we find that for 1 ≤W ≤
6, the agreement between λ2(U = 0) and λ1/2 is rather
good and, contrary to the TMM results, there is no large
artificial enhancement at U = 0. For smaller disorders
W < 1, we have λ2 ≈ M/2 so that it is not surprising
that the Green function becomes altered due to the finite-
ness of the chains [22]. This results in reduced values of λ2.
For large disorders W > 6, we see a slight upward shift of
the computed λ2 values compared to λ1/2. This effect is
due to a numerical problem, since straightforward appli-
cation of equation (6) is numerically unreliable for values
of λ1 as small as 1.
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Fig. 5. Enhancement λ2(U)/λ2(0) for TIP as a function of
interaction strength U at E = 0 for disorder W = 3 (+),
W = 4 (∗), and W = 5 (×) and M = 201. The data are
averaged over 100 samples. The thick (thin) lines indicate data
for U > 0 (U < 0), full (open) circles denote the maximum for
each disorder.

It is noticeable from these results, however, that the
values of λ2(U = 0) are still slightly larger than λ1/2.
In order to explain this behavior, we have computed
〈1|G1(E)|M〉 by exact diagonalization of the SP Hamil-
tonian for at least 100 samples at many different energies
inside the band and then integrated as in equation (7).
Plotting the resulting localisation lengths in Figure 4 we
see that indeed the agreement with λ2(U = 0) is better
than with λ1/2. Thus the corresponding conjecture of ref-
erence [16] is shown to be true.

For U between 0.1 and 1 we have found that the local-
isation lengths are increased by the onsite interaction (cf.
Fig. 4). We have also seen that forW > 1.4 the localisation
lengths λ2(U) increase with increasing U . For smaller W
we have λ2(U) ∼ M/2 and, as discussed above, the data
become unreliable for fixed system size.

Up to now we have been mostly concerned with the be-
havior of λ2 as function of disorder for U ∈ [0, 1]. However,
for large U , it is well-known that the interaction splits the
single TIP band into upper and lower Hubbard bands.
Thus we expect that for large U the enhancement of the
TIP localisation length vanishes. In Figure 5 we present
data for λ2(U)/λ2(0) obtained for three different disorders
for system sizes M = 201 at E = 0. In agreement with the
previous arguments and calculations [17,23,24], we find
that the enhancement is symmetric in U and decreases
for large |U |. For small |U |, we see that the localisation
length increases nearly linearly in |U | with a slope that is
larger for smaller W . We do not find any U2 behavior as
in references [5,6,9]. In reference [24] it has been argued

that at least for λ1 ≈M , there exists a critical Uc = 241/4,
which is independent of W , at which the enhancement is
maximal. We find that in the present case with λ1 < M

−4 −2 0 2 4
U

1.0

1.2

1.4

1.6

1.8

2.0

λ 2(
U

)/
λ 2(

0)

Fig. 6. Enhancement λ2(U)/λ2(0) for TIP as a function of
interaction strength U at E = ±1 for disorder W = 3 (+),
W = 4 (∗), and W = 5 (×) and M = 201. The thick (thin)
lines indicate data for E = 1 (E = −1).

the maximum enhancement maxU [λ2(U)/λ2(0)] depends
on the specific value of disorder used. Another observa-
tion of reference [24] is the duality in U and

√
24/U for

very large |U | (small 1/|U |). The data in Figure 5 are only
compatible with this duality for the large disorder W = 5.
For the smaller disorders and for the range of interactions
shown, we do not observe the duality. We emphasize that
this may be due to restricting ourselves to values |U | ≤ 4.

For E 6= 0, the independence of the enhancement on
the sign of the interaction U is no longer valid. In Figure 6
we show λ2(U)/λ2(0) for the same disorders as before, but
now at energies E = ±1. We find that the enhancement
for U = 1 is larger at E = 1 than at E = −1, whereas
exactly the opposite is true for U = −1. Thus we see that
for positive (negative) U the energies of TIP states are
shifted towards higher (lower) values, eventually leading
to the formation of the aforementioned Hubbard bands.
In Figure 7 we show the localisation lengths at several
values of E for W = 4. As expected from the discussion
above the localisation lengths are always smaller than at
the band center. The enhancements, however, which are
shown in Figure 6, can be equally large for E = 0 and
E 6= 0.

5 FSS applied to the TIP problem

In order to overcome the problems with the finite chain
lengths, we now proceed to use the FSS technique and
construct FSS curves for each U = 0, 0.1, . . . , 1. In
Figure 8 we show the data for the reduced localisation
lengths λ2/M which is to be rescaled just as in the stan-
dard TMM [11] to obtain the localisation length ξ2 for
the infinite system. Note that data for small W is rather
noisy and will thus most likely not give very accurate scal-
ing. Furthermore, in Figure 9 we show λ2 for W = 3 and
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Fig. 7. TIP localisation length λ2 as a function of interaction
strength U at W = 4 for E = −2 (/), E = −1 (O), E = 0 (∗),
E = 1 (4), and E = 2 (.) and M = 201. The thick (thin) lines
indicate data for E ≥ 0 (E < 0).
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Fig. 8. Reduced TIP localisation lengths λ2/M for U = 0
(left) and U = 1 (right) for all disorders W and system sizes M
obtained by averaging 1000 samples for each triple (U,W,M).
Different letters indicate different disorders.

W = 9 and all interaction strengths U = 0, 0.1, . . . , 1.0.
We see that whereas for W = 3 the values of λ2 for U = 0
show only small variations for large M , the W = 9 data
shows a rapid increase of λ2 as M increases. This is due
to the numerical problem of estimating a small localisa-
tion length of the order of 1 in a large system by equa-
tion (6). It is most pronounced for small U where the lo-
calisation lengths are the smallest. Going back to Figure 8,
we see that this does not influence the reduced localisa-
tion lengths λ2/M very much and thus is not expected
to deteriorate the FSS procedure. However, in order to
set an absolute scale in the FSS procedure, one usually
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Fig. 9. TIP localisation lengths λ2 for W = 3 (left) and W = 9
(right) for U = 0, 0.1, . . . , 1 from bottom to top. We remark
that we have taken the same set of random numbers for all U
to increase the numerical efficiency. This is probably the reason
why for different U the fluctuations in the dependence of λ2

on M are similar.
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Fig. 10. Finite-size scaling plot of the reduced TIP localisation
lengths λ2/M for U = 0 (◦), U = 0.2 (3) and U = 1 (2). The
data for U = 0.2 (U = 1) have been divided by 2 (4) for clarity.
Data corresponding to W = 1 are indicated by filled symbols.
The two curves at the bottom show the data for U = 0.2 and 1
and W < 2.5, shifted downward by one order of magnitude for
clarity, but with the data W < 1 fitted with scaling parameters
obtained from the fit in Figure 12.

fits the smallest localisation lengths of the largest systems
to λ2/M = ξ2/M + b(ξ2/M)2 with b small [11]. In the
present case this would mean taking the unreliable data
for W = 9. Therefore, for each U we fit to the localisa-
tion length at W = 3 and adjust the absolute scale of
ξ2 accordingly. In Figure 10 we show the resulting scaling
curves λ2/M = f(ξ2/M) for U = 0, 0.2 and 1.0. Note
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Fig. 11. TIP localisation lengths ξ2 after FSS for U = 0 (◦),
U = 0.2 (3) and U = 1 (2). The solid line represents 1D
TMM data for SP localisation lengths λ1/2, the dashed lines
indicate power-law fits. Inset: Exponent α obtained by the fit
of ξ2 ∝W−2α to the data for U = 0, 0.1, . . . , 1.

that, as expected from Figure 8, FSS is not very accurate
for small W . The previously discussed unreliable data for
large W are visible only in very small upward deviations
from the expected 1/M behavior. In Figure 11 we show
the scaling parameters ξ2 obtained from the FSS curves
of Figure 10.

A simple power-law fit ξ2 ∝ W−2α in the disorder
range W ∈ [1, 5] yields an exponent α which increases
with increasing U as shown in the inset of Figure 11, e.g.,
α = 1.1 for U = 0 and α = 1.55 for U = 1. Thus, although
in Figure 4 the λ2 data at M = 201 nicely follows λ1/2 for
U = 0, we nevertheless find that after FSS with data from
all system sizes, ξ2(0) still gives a slight enhancement. Be-
cause of this in the following we will compare ξ2(U > 0)
with ξ2(0) when trying to identify an enhancement of the
localisation lengths due to interaction. We emphasize that
the slight dip in the α(U) curve around U = 0.7 has also
been observed in reference [16].

The derivation of equation (1) is based on a mapping
of the TIP Hamiltonian onto an effective random matrix
model while assuming uncorrelated interaction matrix el-
ements [5]. In references [22,23] a more accurate estimate
of the matrix elements of the interaction in the basis of
SP states was calculated showing that the original esti-
mates of reference [5] were oversimplified. The authors of
reference [23] then considered a more appropriate effective

random matrix model and obtained λ2 ∝ λβ1 for large val-
ues of λ1. To correct for smaller values of λ1 they suggested

a more accurate expression should be λ2 ∝ λβ1 (1 + c/λ1).
An important prediction of this work is that β is U -
dependent with β ranging from 1 at small U and very
large U to nearly 2 for intermediate values U ∝ t. Using
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Fig. 12. TIP localisation lengths ξ2(U) after FSS for U = 0
(◦), U = 0.1 (4), U = 0.2 (3), U = 0.5 (∗) and U = 1 (2)
plotted versus ξ2(0). The data are for W ∈ [1, 6]. The dashed
lines show fits according to equation (8), the solid line sets
the reference for U = 0. Inset: Exponent β obtained by the
fit of equation (8) to the data for U = 0, 0.1, . . . , 1. The open
symbols correspond to the fit with c = 0.

our data obtained from FSS, we translate this fit function
into

ξ2(U) ∝ ξ2(0)β
(

1 +
c

ξ2(0)

)
. (8)

We remark that the actual least-squares fit is performed
with the numerically more stable fit function y = a +
βx + c ∗ exp(−x) with y = ln[ξ2(U)] and x = ln[ξ2(0)].
In Figure 12 we show results for disorders W ∈ [1, 6] and
various U . As can be seen easily, the fit is rather good and
does indeed capture the deviations from a simple power-
law ξ2(U) ∝ ξ2(0)β for small localisation lengths. In the
inset of Figure 12 we show the variations of β with U
for both the simple power-law and the fit according to
equation (8). We note that contrary to reference [23], we
find β < 1.5 for all U values considered.

In reference [15] it has been suggested that a more suit-
able functional dependence of the TIP localisation lengths
is given by λ2 = λ1/2+c|U |λ2

1. Using the ξ2 data and tak-
ing instead of λ1/2 the more suitable ξ2(0) we translate
this proposed fit as

ξ2(U)− ξ2(0) ∝ ξ2(0)β . (9)

In Figure 13 we plot ξ2(U) − ξ2(0) vs. ξ2(0) for U -values
0.2 and 1. We find that instead of being able to fit the
data with a single β, it appears that for small ξ2(0) < 10
we have β ≈ 2, whereas for larger ξ2(0) we find β ≈ 3/2.
Note that a crossover from the functional form (9) with
β = 2 to β = 3/2 has been suggested previously [25].
However, in that work, the exponent 3/2 is supposed to
be relevant for larger disorders, opposite to what we see
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Fig. 13. TIP localisation lengths ξ2 plotted according to equa-
tion (9) for U = 0.2 (3) and U = 1 (2). The solid line indicates
a slope 2, the dashed line a slope 3/2. The filled symbols cor-
respond to W = 1.

here. As we pointed out above, our FSS may give rise to
artificially small values of ξ2(U) close to the largest system
size, and one might want to argue that the reduction in
slope is due to this effect. However, we emphasize that
the crossover observed in Figure 13 occurs at W = 2.5
where FSS appears to be still reliable. We remark that an
exponent close to 1.5 for small W has also been found in
reference [26] from a multifractal analysis.

The most recent suggestion of how to describe the TIP
localisation data is due to Song and Kim [16]. They assume
a scaling form

ξ2 = W−β0g(|U |/W∆) (10)

with g a scaling function and obtain ∆ = 4 by fitting the
data. Choosing the same value for ∆ we find that our data
can be best described when β0 is related to the disorder
dependence of ξ2 as (β− β0)/∆ ≈ 1/4. However, the scal-
ing is only good forW ∈ [1, 5] and U ≥ 0.3. Unfortunately,
even using our varying exponent β(U), we have not been
able to obtain a good fit to the scaling function with the
data for all U . We emphasize that the ξ2 values for U ≤ 0.2
are smaller than for U ≥ 0.3 and thus numerically quite
reliable.

A much better scaling can be obtained when plotting

ξ2(U)− ξ2(0) = g̃ [f(U)ξ2(0)] (11)

with f(U) determined by FSS. In Figure 14 we show the
resulting scaling curves and scaling parameters f(U). Note
that the scaling is valid for U = 0.1, 0.2, . . . , 1.0 and most
disorders W ∈ [0.6, 9]. Again we see the crossover from
a slope 2 to a slope 3/2. Deviations from scaling occur
for large and very small values of ξ2(U) and are most
likely due to numerical inaccuracy as discussed before. The
behavior of f(U) as shown in the inset indicates that for
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Fig. 14. Scaling plot of equation (11) with TIP localisation
lengths ξ2 for all U and W ∈ [0.6, 9]. The solid line indicates
a slope 2, the dashed line a slope 3/2. Inset: The values of
f(U) needed to make the data collapse onto the U = 0.1 curve.
Solid, dashed and dot-dashed lines are fits of f(U) for U ≥ 0.3,
U ≤ 0.5, and all U , respectively.

U ≥ 0.3 a linear behavior f(U) ∝ U may be valid which
then translates into U2 (U3/2) dependence of ξ2(U)−ξ2(0)
in the regions of Figure 14 with slope 2 (3/2). However,

for U ≤ 0.5, one could also argue that f(U) ∝
√
U which

would give ξ2(U)− ξ2(0) ∝ U (U3/4) in these regions. We
note that a crossover from U to U2 behavior had been
proposed in reference [25], but it should appear at larger
values of U and also be W dependent. We observe that
the best fit to the f(U) data is obtained by a logarithmic
U -dependence as indicated in the inset.

Thus in summary it appears that our data cannot be
described by a simple power-law behavior with a single ex-
ponent neither as function of W , nor as function of ξ2(0),
nor after scaling the data onto a single scaling curve. The
best power-law fit is obtained in Figure 12 with an expo-
nent β(U), whereas after scaling of ξ2(U) − ξ2(0) onto a
single curve we need at least two powers to describe the
scaling curve as shown in Figure 14. Lacking a convincing
explanation as to what fit function should be correct, we
must at present be content with letting the reader decide
for himself.

6 The interacting electron-hole problem

Let us now consider what happens when the two particles
are in different random potentials such that in general
ε1n 6= ε2n. Such a problem is relevant for the proposed ex-
perimental verification of the TIP effect by optical exper-
iments in semiconductors [27]. In these experiments, the
electron will be in a random potential different from that
of the hole. Thus this choice of random potential models
the case of interacting electron-hole pairs (IEH). Again,
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Fig. 15. Enhancement λ2(U)/λ2(0) for IEH as a function of
interaction strength U at E = 0 for disorderW = 3 (+),W = 4
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we will mostly be concerned with the case of repulsive in-
teractions. In the experimental situation, of course, the
interaction is attractive. As shown in Figure 15 we again
have λ2(−U) = λ2(U) for E = 0 and thus our results ap-
ply also to the case U < 0. For simplicity, we also take the
width of the disorder distribution to be the same for both
particles.

As for TIP we compute the IEH localisation lengths by
the DM along the diagonal. Comparing with the results
presented in the previous sections, we find that the results
for IEH are very similar to the case of TIP. FSS is possible
and again the best fit is obtained by using equation (8) as
shown in Figure 16 for U = 0, 0.1, 0.2, 0.5 and 1.0. The
values of the power β(U) shown in the inset of Figure 16
are also much as before. Thus we can conclude that the
case of IEH is very close to the TIP problem.

7 The 2D Anderson model with an additional
diagonal potential

In reference [22], two of us argued that straightforward
application of the random matrix models (RMM) [5] and
the block-scaling picture (BSP) [9] gives rise to an erro-
neous enhancement of the SP localisation length ξ1 in a
2D Anderson model with additional random perturbing
potential U(n) ∈ [−U,U ] along the diagonal. In fact, the
same is true if the potential along the diagonal is taken
to be constant, i.e. U(n) = U . Although it appears obvi-
ous that no such SP enhancement should exist, we have
checked it here with the DM. In Figure 17 we show exam-
ples of the resulting SP localisation lengths ξ1 obtained as
before from FSS of SP localisation lengths λ1 calculated
for various system sizesM = 51, . . . , 261, disordersW and
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Fig. 16. IEH localisation lengths ξ2(U) after FSS for U = 0
(◦), U = 0.1 (4), U = 0.2 (3), U = 0.5 (∗) and U = 1 (2)
plotted versus ξ2(0). The lines are fits as in Figure 12. Inset:
Exponent β obtained by fitting equation (8) to the data for
U = 0, 0.1, . . . , 1.
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Fig. 17. SP localisation lengths as in Figure 3 for U = 0 (– –,
◦) and

√
2 ξ1 obtained by DM for U = 1 with additional ran-

dom (2) or constant (×) potential energies along the diagonal.

potentials U = 0, 0.1, . . . , 1. As expected, we find that for
large disorders W > 5, the data is well described by the
2D TMM results already presented in Section 3. There are
only small changes due to the additional random poten-
tial, all of which tend to decrease the localisation lengths
as they should.

This is in contrast to the straightforward application
of the RMM and the BSP [22] which therefore fail for
the 2D SP Anderson model with additional random po-
tential along the diagonal. Of course this does not mean
that these methods also have to fail for TIP, where, as we
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have shown in the previous sections, a tendency towards
delocalisation due to interaction definitely exists.

8 Conclusions

In conclusion, we have presented detailed results for the
localisation lengths of pair states of two interacting par-
ticles in 1D random potentials. By using the DM to cal-
culate the Green function along the diagonal it is possible
to consider the 2D Anderson model and the problem of
two interacting particles in 1D within the same numeri-
cal formalism. We have checked that for the 2D Anderson
model without interaction the infinite system size results
obtained via FSS from the DM data are in good agreement
with results obtained from the standard TMM especially
for localisation lengths up to the largest system sizes we
have considered. It is also apparent that the DM data
deviate from the TMM only towards smaller localisation
lengths and hence no artificial enhancement of localisation
lengths due to the DM approach is expected.

For TIP in 1D we observe an enhancement of the two-
particle localisation length up to 75% due to onsite inter-
action. This enhancement persists, unlike for TMM, in the
limit of large system size and after constructing infinite-
sample-size estimates from the FSS curves. We have tried
to fit our results to various suggested models. The best fit
was obtained with equation (8) in which the enhancement
ξ2(U)/ξ2(0) depends on an exponent β which is a func-
tion of the interaction strength U . Such a U -dependent
exponent had been previously predicted in reference [23]
for interaction strengths up to U = 1 with β up to 2.
However, we find that β reaches at most 1.5 for U = 1.
Thus we do not see a behavior as in equation (1) with ex-
ponent 2 when using the fit function of reference [23]. On
the other hand, after scaling the data onto a single scaling
curve and using the fit function (9) as proposed with β = 2
in reference [15], we find indeed β = 2 for not too small
disorder strength, e.g., W ≥ 2.5 for U = 1, but observe a
crossover to a behavior with β = 3/2 for smaller W . For
values of U & 1.5 we observe that the enhancement de-
creases again; the position of the maximum depends upon
W . Very similar results are produced by placing the two
particles in different potentials which is of relevance for a
proposed experimental test of the TIP effect [27].

As a final check on our results we consider the effect of
an additional on-site potential (both random and uniform)
on the results for the SP 2D Anderson model. As one may
expect for the case of an additional random potential one
observes only a small decrease in the localisation length
while for an additional uniform potential there is a small
change in ξ1 towards decreasing localisation lengths for
positive U .
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